278 research outputs found

    On Bitangential Interpolation in the Time Varying Setting for Hilbert-Schmidt Operators: The Continuous Case

    Get PDF
    The Hilbert space of lower triangular Hilbert–Schmidt operators on the real line is a natural analogue of the Hardy space of a half-plane, where the complex numbers are now replaced by matrix-valued functions. One can associate with a bounded operator its “values” at a matrix-valued function [see Ballet al.,Oper. Theory Adv. Appl.56(1992), 52–89], and this allows [see Ballet al.,Integral Equations Operator Theory20(1994), 1–43] to define and solve the analogue of the two-sided Nudelman interpolation problem for bounded operators (which form an analogue ofH∞(C+)). In this paper we consider the two-sided interpolation problem with a Hilbert–schmidt norm constraint (rather than the more common operator-norm constraint) on the interpolant

    On Bitangential Interpolation in the Time Varying Setting for Hilbert-Schmidt Operators: The Continuous Case

    Get PDF
    The Hilbert space of lower triangular Hilbert–Schmidt operators on the real line is a natural analogue of the Hardy space of a half-plane, where the complex numbers are now replaced by matrix-valued functions. One can associate with a bounded operator its “values” at a matrix-valued function [see Ballet al.,Oper. Theory Adv. Appl.56(1992), 52–89], and this allows [see Ballet al.,Integral Equations Operator Theory20(1994), 1–43] to define and solve the analogue of the two-sided Nudelman interpolation problem for bounded operators (which form an analogue ofH∞(C+)). In this paper we consider the two-sided interpolation problem with a Hilbert–schmidt norm constraint (rather than the more common operator-norm constraint) on the interpolant

    Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures

    Full text link
    A Landau-Ginsburg-Devonshire-type nonlinear phenomenological theory is presented, which enables the thermodynamic description of dense laminar polydomain states in epitaxial ferroelectric thin films. The theory explicitly takes into account the mechanical substrate effect on the polarizations and lattice strains in dissimilar elastic domains (twins). Numerical calculations are performed for PbTiO3 and BaTiO3 films grown on (001)-oriented cubic substrates. The "misfit strain-temperature" phase diagrams are developed for these films, showing stability ranges of various possible polydomain and single-domain states. Three types of polarization instabilities are revealed for polydomain epitaxial ferroelectric films, which may lead to the formation of new polydomain states forbidden in bulk crystals. The total dielectric and piezoelectric small-signal responses of polydomain films are calculated, resulting from both the volume and domain-wall contributions. For BaTiO3 films, strong dielectric anomalies are predicted at room temperature near special values of the misfit strain.Comment: 19 pages, 8 figure

    Antagonism of Tumoral Prolactin Receptor Promotes Autophagy-Related Cell Death

    Get PDF
    Therapeutic upregulation of macroautophagy in cancer cells provides an alternative mechanism forcell death. Prolactin (PRL) and its receptor (PRLR) are considered attractive therapeutic targets because of their roles as growth factors in tumor growth and progression. We utilized G129R, an antagonist peptide of PRL, to block activity of the tumoral PRL/PRLR axis, which resulted in inhibition of tumor growth in orthotopic models of human ovarian cancer. Prolonged treatment with G129R induced the accumulation of redundant autolysosomes in 3D cancer spheroids, leading to a type II programmed cell death. This inducible autophagy was a noncanonical beclin-1-independent pathway and was sustained by an astrocytic phosphoprotein (PEA-15) and protein kinase C zeta interactome. Lower levels of tumoral PRL/PRLR inclinical samples were associated with longer patient survival. Our findings provide an understanding of the mechanisms of tumor growth inhibition through targeting PRL/PRLR and may have clinical implications. © 2014 The Authors

    Semiseparable integral operators and explicit solution of an inverse problem for the skew-self-adjoint Dirac-type system

    Full text link
    Inverse problem to recover the skew-self-adjoint Dirac-type system from the generalized Weyl matrix function is treated in the paper. Sufficient conditions under which the unique solution of the inverse problem exists, are formulated in terms of the Weyl function and a procedure to solve the inverse problem is given. The case of the generalized Weyl functions of the form ϕ(λ)exp{2iλD}\phi(\lambda)\exp\{-2i\lambda D\}, where ϕ\phi is a strictly proper rational matrix function and D=D0D=D^* \geq 0 is a diagonal matrix, is treated in greater detail. Explicit formulas for the inversion of the corresponding semiseparable integral operators and recovery of the Dirac-type system are obtained for this case

    Oscillatory Fractional Brownian Motion and Hierarchical Random Walks

    Full text link
    We introduce oscillatory analogues of fractional Brownian motion, sub-fractional Brownian motion and other related long range dependent Gaussian processes, we discuss their properties, and we show how they arise from particle systems with or without branching and with different types of initial conditions, where the individual particle motion is the so-called c-random walk on a hierarchical group. The oscillations are caused by the discrete and ultrametric structure of the hierarchical group, and they become slower as time tends to infinity and faster as time approaches zero. We also give other results to provide an overall picture of the behavior of this kind of systems, emphasizing the new phenomena that are caused by the ultrametric structure as compared with results for analogous models on Euclidean space

    Specific heat and heat conductivity of the BaTiO3 polycrystalline films with the thickness in the range 20 - 1100 nm

    Full text link
    Thermal properties - specific heat and heat conductivity coefficient - of polycrystalline BaTiO3 films on massive substrates were studied as a function of the temperature and the film thickness by ac-hot probe method. The anomalies of specific heat with decreasing of the film thickness from 1100 to 20 nm revealed the reducing of critical temperature (Tc) and excess entropy of the ferroelectric phase transition, which becomes diffused. The critical thickness of the film at which Tc = 0 estimated as 2.5 nm.Comment: 12 pages, 7 figures, 2 tables, 450kb; submitted to J.Phys.:Cond.Mat

    Genome-wide pleiotropy and shared biological pathways for resistance to bovine pathogens

    Get PDF
    <div><p>Host genetic architecture is a major factor in resistance to pathogens and parasites. The collection and analysis of sufficient data on both disease resistance and host genetics has, however, been a major obstacle to dissection the genetics of resistance to single or multiple pathogens. A severe challenge in the estimation of heritabilities and genetic correlations from pedigree-based studies has been the confounding effects of the common environment shared among relatives which are difficult to model in pedigree analyses, especially for health traits with low incidence rates. To circumvent this problem we used genome-wide single-nucleotide polymorphism data and implemented the Genomic-Restricted Maximum Likelihood (G-REML) method to estimate the heritabilities and genetic correlations for resistance to 23 different infectious pathogens in calves and cows in populations undergoing natural pathogen challenge. Furthermore, we conducted gene-based analysis and generalized gene-set analysis to understand the biological background of resistance to infectious diseases. The results showed relatively higher heritabilities of resistance in calves than in cows and significant pleiotropy (both positive and negative) among some calf and cow resistance traits. We also found significant pleiotropy between resistance and performance in both calves and cows. Finally, we confirmed the role of the B-lymphocyte pathway as one of the most important biological pathways associated with resistance to all pathogens. These results both illustrate the potential power of these approaches to illuminate the genetics of pathogen resistance in cattle and provide foundational information for future genomic selection aimed at improving the overall production fitness of cattle.</p></div
    corecore